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Abstract

Performance of iterative clustering algorithms which converges to numerous local minima depend highly on initial

cluster centers. Generally initial cluster centers are selected randomly. In this paper we propose an algorithm to

compute initial cluster centers for K-means clustering. This algorithm is based on two observations that some of the

patterns are very similar to each other and that is why they have same cluster membership irrespective to the choice of

initial cluster centers. Also, an individual attribute may provide some information about initial cluster center. The initial

cluster centers computed using this methodology are found to be very close to the desired cluster centers, for iterative

clustering algorithms. This procedure is applicable to clustering algorithms for continuous data. We demonstrate the

application of proposed algorithm to K-means clustering algorithm. The experimental results show improved and

consistent solutions using the proposed algorithm.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Partitioning a given set of points into homo-

geneous groups is one of the most fundamental

problem in pattern recognition. Clustering is one

of the widely used knowledge discovery technique

to reveal structures in a data set that can be ex-

tremely useful to the analyst. Clustering has a

variety of applications in different domains viz
data mining and knowledge discovery (Fayyad
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et al., 1996), data compression and vector quan-
tization (Gersho and Gray, 1992), optimization

(Bradley et al., 1997), finance, manufacturing and

medical organizations. The problem of clustering

is to partition a data set consisting of n points

embedded in m-dimensional space into K distinct

set of clusters such that the data points within a

cluster are more ‘similar’ among them than to data

points in other cluster. The term similar, when
applied to clusters, means closer by some similarity

measure. There are a number of proximity indices

that have been used as similarity measures (An-

derberg, 1973).

K-Means clustering algorithm (Mac Queen,

1967), developed three decades ago is one of the
ed.
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most popular clustering algorithm used in variety

of domains. A priori knowledge of number of

clusters are must for K-means clustering algo-

rithm. K-Means is defined over continuous data

(Fukunaga, 1990) (Duda and Hart, 1973).

K-Means algorithm calculates its centers itera-
tively (Gersho and Gray, 1992). Let D ¼
fdi j i ¼ 1; . . . ; ng be a data set having K-clusters,
C ¼ fci j i ¼ 1; . . . ;Kg be a set of K centers and

Sj ¼ fd jd is member of cluster kg be the set of

samples that belong to the kth cluster. K-Means

algorithm minimizes the following function which

is defined as a cost function

Cost ¼
Xn

i¼1

distðdi; ckÞ ð1Þ

where distðdi; ckÞ measures the Euclidean distance

between a pattern di and its cluster center ck. The
K-means algorithm calculate cluster centers itera-

tively as follows:

1. Initialize the centers in ck using random sam-

pling

2. Decide membership of the patterns in one of

the K-clusters according to the minimum dis-

tance from cluster center criteria

3. Calculate new ck centers as:

ck ¼
P

di2Sk di
jSkj

jSkj is the number of data items in the kth
cluster

4. Repeat steps 2 and 3 till there is no change in

cluster centers.

K-Means does not guarantee unique clustering

because we get different results with randomly

chosen initial clusters. Machine learning practi-

tioners find it difficult to rely on the results thus

obtained. The K-means algorithm gave better re-

sults only when the initial partitions was close to

the final solution (Jain and Dubes, 1988). Several

attempts have been reported to solve the cluster
initialization problem. A recursive method for

initializing the means by running K clustering

problems is discussed by Duda and Hart (1973). A

variant of this method consists of taking the mean
of the entire data and then randomly perturbing it

K times (Thiesson et al., 1997). Bradley et al.

(1997) reported that the values of initial means

along any one of the m coordinate axes is deter-

mined by selecting the K densest ‘‘bins’’ along

that coordinate. Bradley and Fayyad (1998) pro-
poses a procedure that refines the initial point to a

point likely to be close to the modes of the joint

probability density of the data. Pen~a et al. (1999)

presented a comparative study for different ini-

tialization methods for the K-means algorithm.

The result of their experiments illustrate that the

random and the Kaufman initialization method

outperforms the rest of the compared methods as
they make the K-means more effective and more

independent on initial clustering and on instance

order.

In Section 2, we present our proposed cluster

center initialization algorithm (CCIA) and an

algorithm based on density based multiscale data

condensation (Mitra et al., 2002) to merge similar

clusters. Section 3 shows the experimental run of
CCIA on Fossil data (Yi-tzuu, 1978) and demon-

strate improved and consistent clustering in com-

parison to random initialization. In Section 4, we

present some simulation results on real world data

sets. Conclusion follows in Section 5.
2. Cluster center initialization algorithm (CCIA)

In iterative clustering algorithms the procedure

adopted for choosing initial cluster centers is ex-

tremely important as it has a direct impact on the

formation of final clusters. Since clusters are sep-

arated groups in a feature space, it is desirable to

select initial centers which are well separated. It is

dangerous to select outliers as initial centers, since
they are away from normal samples. Our proposed

algorithm calculates the initial cluster centers that

are quite close to the desired cluster centers. As

there are no universally accepted method for

selecting initial cluster center as reported by Meila

and Heckerman (1998), we compare the results

against the standard method of randomly choos-

ing initial starting points.
We observed that if data sets are clustered

repetitively with random initialization using
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K-means clustering algorithm, some of the pat-

terns have same cluster membership consistently.

In other words they belong to same clusters ir-

respective of initialization. For example D ¼
fd1; . . . ; dng be a dataset consisting of n patterns.

Let us assume dm1, dm2, dm3, dm4, where 16m1, m2,
m3, m46 n are very similar then they have same

cluster membership whenever K-means algorithm

is executed using different initial points. This

information can be used to compute initial cen-

ters.

Instead of using random initialization every

time, we follow a novel approach to provide initial

cluster centers. This approach is based on the
experimental fact that individual attribute can

provide some lead to initial cluster centers. The

first step of the proposed algorithm is the com-

putation of cluster centers for individual attri-

butes. To achieve this we use K-means algorithm

over this attribute. To instigate K-means algorithm

we need some initial centers. Instead of providing

random cluster centers we provide centers that are
far apart keeping the constraint that outliers are

removed.

We assume that each of the attributes of the

pattern space are normally distributed. For K-fixed
clusters we divide the normal curve into K parti-

tions such that the area under these partitions is

equal. We then take the midpoints of the interval

of each of these partitions. This has been done to
scrap the outliers and to keep the centers as far as

possible. We calculate the percentile (Neter et al.,

1992) of the sth point such that the area from �1
to sth mid-point is equal to 2s�1

2K , s ¼ 1; 2; . . . ;K. We

compute the attribute values corresponding to

these percentiles using mean and standard devia-

tion of the attribute. This will serve as seed point

for the K-means clustering for this attribute. It is
possible that this attribute may not follow normal

distribution. But by running K-means algorithm

over this attribute, it is more likely that we get

centers where the density of attribute values is

high, hence these centers are good representative

of clusters. As this process accomplishes, every

attribute values of this attribute are associated

with some clusters. Now we run K-means algo-
rithm on entire data set with initial cluster mem-

bership achieved by above mentioned process. We
repeat the whole process for all the attributes.

After this process we get a sequence of m cluster

labels for every pattern. We call it as a pattern

string. These classes of pattern string may or may

not be same. For n patterns we will have n such

pattern strings, where ith entry of the jth pattern
string corresponds to the class of the jth pattern

when the initial centers were based on ith attribute.

Suppose we obtain K 0 distinct pattern strings.

These pattern strings represent K 0 clusters. We

compute the cluster centers for these K 0 clusters. If

K 0 is equal to K, then centers of these K 0 clusters

should be treated as the initial cluster centers for

the K-means algorithm. If K 0 is greater then the
number of desired clusters ðKÞ, we merge simi-

lar clusters to get K-clusters and centers of these

K-clusters will become initial cluster centers for the

K-means algorithm. The merging of clusters is

achieved by using density-based multiscale data

condensation method which is briefly discussed in

the next subsection.

2.1. Density-based multi scale data condensation

A data set can be replaced by a subset of rep-

resentative patterns such that the accuracy of

estimates (e.g. of probability density, dependen-

cies, class boundaries) obtained from such a re-

duced set should be comparable to that obtained

using the entire data set. There exists various ap-
proaches for data reduction such as random

sampling, stratified sampling and peepholing

(Catlett, 1991), uncertainty sampling (Lewis and

Catlett, 1994), and active learning (Roy and

McCallum, 2001). Mitra et al. (2002) proposed a

density-based multi scale data condensation

(DBMSDC) method for selecting a small repre-

sentative subset from a data set. They experimen-
tally showed the superiority of their approach as

compared to several related condensation methods

both in terms of condensation ratio and estimation

error. This data condensation algorithm involves

estimating the density at a point, sorting the points

based on the density criterion, selecting a point

according to the sorted list and pruning all points

lying within a disc about a selected point with
radius inversely proportional to the density at that

point.
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CCIA generates K 0 clusters which may be

greater than the desired number of clusters K. In
this situation our aim is to merge some of the

similar clusters so as to get K clusters. Since the

clusters are well represented by their centers, we

can merge those clusters whose centers are near to
each other. For merging similar clusters, the center

of each cluster is computed and K-representative
subset of centers are selected from the K 0 cluster

centers using DBMSDC algorithm. These K-sub-
sets provide us with the information that which of

these clusters are alike. It means clusters with

cluster center in the same subset are similar and

will be merged. For every K-subset, the clusters
contained in them are merged and center of

merged clusters are computed and treated as initial

cluster center of the K-means algorithm. Since we

have K-subsets we will have K-initial cluster cen-

ters.

2.2. Algorithm (CCIA)

In this subsection we present execution steps of

our proposed cluster center initialization algo-

rithm (CCIA) for K-means clustering. This algo-

rithm consists of two parts. The first part deals

with generation of K 0 cluster centers. If K 0 > K
then we execute the second part of the algorithm to

merge similar clusters to get K cluster centers.

These K cluster centers are taken as initial cluster
center for K-means algorithm.

Input:

D––the set of n data elements described with

attributes A1;A2; . . . ;Am where m ¼ no. of attri-

butes and all attributes are numeric

K––predefined number of clusters

Output:
Initial cluster centers for K-means algorithm

1. For each attribute Aj repeat steps 2–9

2. Compute mean ðljÞ and standard devia-

tion ðrjÞ
3. Compute percentile zs, corresponding to

area under the standard normal curve

from �1 to zs equals to 2s�1
2K , where

s ¼ 1; 2; . . . ;K
4. Compute attribute value corresponding to

these percentiles using means and standard
deviation of the attribute as xs ¼ zs � rj þ
lj

5. Create initial partitions using Euclidean

distance between xs and Ath
j attribute of

all patterns (The assigned class label is
treated as the class of the pattern)

6. Execute K-means on this attribute

7. Allocate cluster labels obtained from step

6 to every pattern and compute new dense

centers

8. Execute K-means on complete data set

9. Store the class labels as Stj where t ¼ 1;
2; . . . ; n

10. Generate pattern string, Pt corresponding
to every pattern by storing the class labels.

Every pattern string will have m class

labels

11. Find unique strings, K 0, which is the num-

ber of distinguishable clusters and K 0 PK.
Find the center of each of these clusters

12. If K 0 > K, apply Algorithm Merge-
DBMSDC to these K 0 centers to get K-
set of points

13. Merge those clusters whose centers are

occurring in the same set. Since we have

K-set of points we get K-clusters
14. Find the mean of these K-clusters to get

final K-centers that will be used as initial

cluster centers

The computation of K-subsets from K 0 cluster

centers using DBMSDC is described as under:

Algorithm MergeDBMSDC

Input:

K 0 ð> KÞ cluster centers
Output:
K cluster centers

1. Let K 0 is the number of clusters generated

by CCIA and K 0 > K
2. Compute cluster center for every K 0 cluster

3. Let B ¼ fx1; x2; . . . ; xK 0 g be the set of K 0

cluster centers

4. Choose a positive integer q and initialize

l ¼ 1 and repeat steps 5–10 till B ¼ /
5. For each cluster center xi 2 B, calculate

the distance of the qth nearest neighbor

of xi in B. Denote it by rq;xi
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Fig. 1. Computation of percentiles zs for attribute A1 for K ¼ 3

(step 3 of CCIA).
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6. Select the point xj 2 B, having the lowest

value of rq;xj . Ties in the lowest value of

rq;xi may be resolved by following some

convention like the index of the samples

etc.
7. Create a set Sl ¼ /
8. Add xj to Sl
9. Remove all points from B that lie with in

a disc of radius 1:5rq;xj centered at xj and
add them to Sl. The set B consisting of

the remaining centers is to be renamed

as B.
10. Increment l by 1 i.e. l ¼ lþ 1;

We choose q nearest neighbors such that steps

1–10 is repeated K-times. After this process we

will have K-subsets of similar cluster centers.
3. Experimental run of CCIA

The purpose of this experiment is to show how

close the initial cluster centers computed by pro-

posed algorithm CCIA, are to the desired cluster

centers. We present the complete experimental run

of CCIA on Fossil data taken from Chernoff

(Yi-tzuu, 1978). It consists of 87 nummulitidae

speciments from the Eocene yellow limestone for-

mation of north western Jamaica. Each specimen
is characterized by six measurements. There are

three cluster groups as identified by Chernoff,

which contains 40(I), 34(II) and 13(III) patterns

each. If we run the K-means algorithm, most of the

time it merges clusters 1 and 3. The computational

steps for calculating the initial cluster centers using

CCIA are as under:

1. Normalize the complete data set (as discussed

in Section 4)

2. For attribute A1 repeat steps 3–10

3. Compute mean ðl1Þ and standard deviation

ðr1Þ, l1 ¼ 0:391, r1 ¼ 0:272
4. Since this is a three class problem therefore

K ¼ 3. Compute the percentiles z1, z2, z3 such

that the area under the normal curve from
�1 to z1 is equal to 1/6,

�1 to z2 is equal to 1/2 and

�1 to z3 ¼ 5=6
Therefore, z1 ¼ �0:9672, z2 ¼ 0:0, z3 ¼ 0:9672
(Fig. 1)

5. Compute attribute values corresponding to

these percentiles

xs ¼ zs � r1 þ l1; s ¼ 1; 2; 3

x1 ¼ 0:127; x2 ¼ 0:391; x3 ¼ 0:655

6. Create initial partitions using Euclidean dis-

tance between xs and this attribute of all pat-
terns

7. Execute K-means over this attribute

8. Allocate cluster labels obtained from step 7 to

every pattern and compute the new dense cen-

ters as 0.164, 0.497, 0.860 (Fig. 2)

9. Execute K-means on complete data set

10. Store the class labels

11. Repeat the above procedure for the remaining
five attributes to arrive at 87 different pattern

strings such that every pattern gets associated

with six class labels e.g.

Pattern 1––121312

Pattern 2––121312

Pattern 34––121312

Pattern 41––212123

Pattern 42––312123
Pattern 50––212123

Pattern 51––312123

Pattern 65––212123

Pattern 76––133231

Pattern 87––133231 etc.

12. Find the unique strings (K 0 clusters), that is

string 121312 (cluster 1) has count 40

string 212123 (cluster 2) has count 20
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Fig. 2. Values of centers of each attribute where density of attribute values in quite high.
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string 312123 (cluster 3) has count 14

string 133231 (cluster 4) has count 13

and hence K 0 ¼ 4. Find the center of each of

these distinguishable clusters i.e.

Center of cluster 1, 0.230, 0.553, 0.539, 0.538,

0.265, 0.232
Center of cluster 2, 0.540, 0.080, 0.525, 0.207,

0.560, 0.727

Center of cluster 3, 0.872, 0.073, 0.500, 0.161,

0.622, 0.777

Center of cluster 4, 0.142, 0.717, 0.480, 0.348,

0.871, 0.016



Table 1

Comparing CCPI of data sets

Data set CCPI

CCIA Random

Fossil data 0.0021 0.3537

Iris data 0.0396 0.8909

Wine data 0.1869 0.3557

Ruspini data 0.0361 1.2274

Letter image

recognition data

0.0608 0.1572
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13. Since K 0 > K, apply MergeDBMSDC algo-

rithm. to get three set of points ! {1}, {2,3},

{4}

14. Clusters 2 and 3 are merged because they be-

long to same set and we are left with three clus-
ters

15. Find the mean of these three clusters to get fi-

nal three centers that are the initial cluster cen-

ters for K-means algorithm

0.230, 0.553, 0.540, 0.538, 0.265, 0.232

0.677, 0.078, 0.515, 0.189, 0.586, 0.748

0.142, 0.718, 0.481, 0.348, 0.871, 0.016.
4. Results and discussion

To establish practical applicability of the CCIA

algorithm, we implemented it and tested its per-

formance on a number of other real world data

sets, the fossil data, the wine recognition data, the

Ruspini data and the letter image recognition data.
Since different attributes are measured on dif-

ferent scales, when Euclidean distance formula is

used directly, the effect of some attributes might be

completely dwarfed by others that have larger

scales of measurement. Consequently it is usual to

normalize all attribute values to lie between 0 and

1 (Witten and Frank, 2000).

The data sets used for the evaluation include a
‘‘correct answer’’ or label for each pattern. We use

the labels in a post processing step for evaluating

performance. The error that we have calculated

depends on number of misclassified patterns and

the total number of patterns in the dataset.

Errorðin %ageÞ ¼ Number of misclassified patterns

Total number of patterns

� 100

For computing error for K-means algorithms with

random initial cluster centers, K-means was exe-

cuted 100 times and the average error is taken as

the performance measure.

To measure the degree of closeness between the

initial cluster centers and the desired cluster cen-
ters we have defined the Cluster Center Proximity

Index ðCCPIÞ as
CCPI ¼ 1

K � m
XK

s¼1

Xm

j¼1

fsj � Csj

fsj

����
����

where fsj is the jth attribute value of the desired sth
cluster center and Csj is the jth attribute value of

the initial sth cluster center.

4.1. Iris data

This data set (Fisher, 1936) has often been used

as a standard for testing clustering algorithms. This

data set has three classes that represents three dif-
ferent varieties of Iris flowers namely Iris setosa(I),

Iris versicolor(II) and Iris virginica(III). Fifty

samples were obtained from each of three classes,

thus a total of 150 samples is available. Every

sample is described by a set of four attributes viz

sepal length, sepal width, petal length and petal

width. In numerical representation, two of the

classes (virginica, versicolor) have a large overlap
while third is well separated from the other two.

4.2. Wine recognition data

This data set is taken from UCI repository

website (see references). This data set is the result

of a chemical analysis of wines grown in the same

region in Italy but derived from three different
cultivars. The analysis determined the quantities of

13 constituents found in each of the three types of

wines. There were overall 178 instances. There are

59, 71 and 48 instances in class I, class II and class

III respectively. The classes are separable.

4.3. Ruspini data

The Ruspini data set (Ruspini, 1970) is popu-

lar to illustrate clustering techniques. It consists of



Table 5

Ruspini data

Clusters

found

Points in

cluster

Coming from Error with K-means

using initial centers

computed by CCIA

Average error with

K-means using random

initialization
I II III IV

C1 20 20 0 0 0 4.0% 8.8%

C2 23 3 20 0 0

C3 17 0 0 17 0

C4 15 0 0 0 15

Table 6

Letter image recognition data

Clusters

found

Points in

cluster

Coming from Error with K-means using

initial centers computed by

CCIA

Average error with K-means

using random initializationA D

C1 551 522 29 8.55% 8.47%

C2 641 73 568

Table 4

Wine data

Clusters

found

Points in

cluster

Coming from Error with K-means

using initial centers

computed by CCIA

Average error with

K-means using random

initialization
I II III

C1 65 59 6 0 5.05% 5.61%

C2 62 0 62 0

C3 51 0 3 48

Table 2

Fossil data

Clusters

found

Points in

cluster

Coming from Error with K-means

using initial centers

computed by CCIA

Average error with

K-means using andom

initialization
I II III

C1 40 40 0 0 0.00% 12.41%

C2 34 0 34 0

C3 13 0 0 13

Table 3

Fisher’s Iris data

Clusters

found

Points in

cluster

Coming from Error with K-means

using initial centers

computed by CCIA

Average error with

K-means using

random initialization
I II III

C1 50 50 0 0 11.33% 23.6%

C2 61 0 47 14

C3 39 0 3 36
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75 observations on two variables making up
four natural groups including 23, 20, 17 and

15 entities in classes I, II, III and IV respec-

tively.
4.4. Letter image recognition data

This data set is also obtained from UCI repos-

itory website (see references). The objective is to
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identify each of a large number of black-and-white

rectangular pixel displays as one of the 26 capital

letters in the English alphabet. The character

images were based on 20 different fonts and each

letter within these 20 fonts was randomly distorted

to produce a file of 20,000 unique stimuli. Each
stimulus was converted into 16 primitive numerical

attributes (statistical moments and edge counts)

which were then scaled to fit into a range of integer

values from 0 through 15. The training data con-

sists of first 16,000 items and testing data com-

prises of remaining 4000 items to predict the letter

category. For experimental purpose we have taken

595 patterns of letter A and 597 patterns of letter
D from the training data set.

The comparison of initial cluster centers com-

puted using CCIA and desired cluster centers, for

these data sets, is shown in Table 1. The clustering

results using K-means clustering algorithm with

initial cluster centers generated using CCIA and

random initialization are presented (for these data

sets) from Tables 2–6. The CCPI (Cluster Center
Proximity Index) values presented in Table 1 show

smaller values of CCPI when initial cluster centers

were computed using CCIA in comparison to

random initial center selection, for all data sets.

Low value of CCPI is the measure of good selec-

tion of initial cluster centers.

Clustering results, thus obtained, with K-means

algorithm using the initial centers computed by
CCIA suggest that we get improved and consistent

clusters for all data set in comparison to random

initialization. We are getting better clustering re-

sults with K-means clustering algorithm using ini-

tial cluster centers computed by CCIA because of

good selection of initial centers, which are very

near to the desired cluster centers. This choice of

initial cluster centers may avoid the K-means
clustering algorithm to get trapped in one of

the numerous local minima (Jain andDubes, 1988).
5. Conclusion

We have presented an algorithm (CCIA) for

computing initial cluster centers for iterative clus-
tering algorithm. This procedure is based on the

experimental fact that very similar data points
(patterns) form the core of clusters and their

cluster membership remain the same. However,

the outliers are more susceptible to a change in

cluster membership. Hence these similar patterns

(which forms the core of clusters) aid in finding

initial cluster centers. We observed that individual
attribute also provide information in computing

initial cluster centers. CCIA generate clusters

which may be more than the number of desired

clusters. Similar clusters are merged using density-

based multiscale data condensation method to get

the desired number of clusters. Center of these

clusters have been used as initial clusters for the K-
means clustering algorithm. Experimental results
show improved and consistent cluster structures as

compared to the random choice of initial cluster

centers.
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